Amperometric biosensor for xanthine determination based on Fe3O4 nanoparticles.

نویسندگان

  • Funda Özcan Oztürk
  • Pınar Esra Erden
  • Ceren Kaçar
  • Esma Kiliç
چکیده

An amperometric xanthine biosensor was developed based on the immobilization of xanthine oxidase (XO) into the Fe3O4 nanoparticles modified carbon paste. Electron transfer properties of unmodified and Fe3O4 nanoparticles modified carbon paste electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Fe3O4 nanoparticles increased electroactive surface area of the electrode and electron transfer at solution/electrode interface. Optimum pH, nanoparticle loading and enzyme loading were found to be 6.0; 14.2% and 0.6 Unit XO respectively. Fe3O4 nanoparticles modified carbon paste enzyme electrode allowed xanthine determination at -0.20 V, thus minimizing the potential interferences from electrochemically oxidizable substances such as ascorbic acid and uric acid. A linear relationship was obtained in the concentration range from 7.4 × 10-7 mol L-1 to 7.5 × 10-5 mol L-1 and a detection limit of 2.0 × 10-7 mol L-1. The biosensor was used for determination of xanthine in urine samples and the results indicate that the biosensor is effective for the detection of xanthine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Fe3O4 Nanoparticles for Enhancement of Biosensor Response to the Herbicide 2,4-Dichlorophenoxyacetic Acid

Magnetic nanoparticles of Fe₃O₄ were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe₃O₄ nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP) and Fe₃O₄ nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the subs...

متن کامل

Gold nanoparticles-enhanced amperometric tyrosinase biosensor based on three-dimensional sol-gel film-modified gold electrodes.

An amperometric biosensor for the determination of catechol was developed by immobilizing tyrosinase (tyr) on gold nanoparticles (AuNPs) and a (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel three-dimensional network film-modified gold electrode. The AuNPs self-assembled in a sol-gel network provided an excellent microenvironment for an enzymatic reaction between tyrosinase and the substrate...

متن کامل

The Inkjet Printing of Reducible AgNPs amperometric glucose biosensor Electrodes

The enzymes immobilization of the is crucially effective factor in biosensor preparation. Metal nanoparticles potentially able to immobilize the enzymes according to unique properties including large surface-to-volume ratio, high surface reaction activity, high catalytic efficiency, and strong adsorption ability. A novel and highly sensitive amperometric glucose biosensor was obtained by using ...

متن کامل

Amperometric Hydrogen Peroxide Biosensor Based on Immobilization of Hemoglobin on a Glassy Carbon Electrode Modified with Fe3O4/Chitosan Core-Shell Microspheres

Novel magnetic Fe(3)O(4)/chitosan (CS) microspheres were prepared using magnetic Fe(3)O(4) nanoparticles and the natural macromolecule chitosan. Then, using an easy and effective hemoglobin (Hb) immobilization method, an innovative biosensor with a Fe(3)O(4)/CS-Hb-Fe(3)O(4)/CS "sandwich" configuration was constructed. This biosensor had a fast (less than 10 s) response to H(2)O(2) and excellent...

متن کامل

Acetylcholinesterase Inhibition-Based Biosensor for Aluminum(III) Chronoamperometric Determination in Aqueous Media

A novel amperometric biosensor for the determination of Al(III) based on the inhibition of the enzyme acetylcholinesterase has been developed. The immobilization of the enzyme was performed on screen-printed carbon electrodes modified with gold nanoparticles. The oxidation signal of acetylthiocholine iodide enzyme substrate was affected by the presence of Al(III) ions leading to a decrease in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta chimica Slovenica

دوره 61 1  شماره 

صفحات  -

تاریخ انتشار 2014